Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2314261121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513094

RESUMO

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.


Assuntos
Arsênio , Poluentes do Solo , Oligoelementos , Arsênio/metabolismo , Oligoelementos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
2.
Sci Total Environ ; 875: 162490, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871705

RESUMO

Zinc (Zn) is an important micronutrient but can be toxic at elevated concentrations. We conducted an experiment to test the effect of plant growth and soil microbial disturbance on Zn in soil and plants. Pots were prepared with and without maize and in an undisturbed soil, a soil that was disturbed by X-ray sterilization and a soil that was sterilized but reconditioned with the original microbiome. The Zn concentration and isotope fractionation between the soil and the soil pore water increased with time, which is probably due to physical disturbance and fertilization. The presence of maize increased the Zn concentration and isotope fractionation in pore water. This was likely related to the uptake of light isotopes by plants and root exudates that solubilized heavy Zn from the soil. The sterilization disturbance increased the concentration of Zn in the pore water, because of abiotic and biotic changes. Despite a threefold increase in Zn concentration and changes in the Zn isotope composition in the pore water, the Zn content and isotope fractionation in the plant did not change. These results have implications for Zn mobility and uptake in crop plants and are relevant in terms of Zn nutrition.


Assuntos
Poluentes do Solo , Solo , Solo/química , Isótopos de Zinco/química , Zinco/química , Isótopos , Plantas , Raízes de Plantas
3.
Ecol Evol ; 9(7): 3740-3755, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015963

RESUMO

Along ecological gradients, phenotypic differentiation can arise through natural selection on trait diversity and magnitude, and environment-driven plastic changes. The magnitude of ecotypic differentiation versus phenotypic plasticity can vary depending on the traits under study. Using reciprocal transplant-common gardens along steep elevation gradients, we evaluated patterns of ecotypic differentiation and phenotypic plasticity of several growth and defense-related traits for two coexisting but unrelated plant species, Cardamine pratensis and Plantago major. For both species, we observed ecotypic differentiation accompanied by plasticity in growth-related traits. Plants grew faster and produced more biomass when placed at low elevation. In contrast, we observed fixed ecotypic differentiation for defense and resistance traits. Generally, low-elevation ecotypes produced higher chemical defenses regardless of the growing elevation. Yet, some plasticity was observed for specific compounds, such as indole glucosinolates. The results of this study may suggest that ecotypic differentiation in defense traits is maintained by costs of chemical defense production, while plasticity in growth traits is regulated by temperature-driven growth response maximization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...